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On Hamiltonian structure of integrable equations under the 
group and matrix reductions 

B G Konopelchenko and V G Mokhnachev 
Institute of Nuclear Physics, 630090, Novosibirsk 90, USSR 

Received 7 November 1980 

Abstract. The Hamiltonian structure of ( a )  differential equations integrable by means of an 
arbitrary-order linear spectral problem under reductions to classical Lie algebras BN, CN, 
DN and also of ( b )  equations associated with the matrix analogue of the linear Zakharov- 
Shabat linear problem is analysed. 

I. Introduction 

The Hamiltonian interpretation of the differential equations integrable by the inverse 
scattering method has been discussed in many papers, beginning with the papers of 
Gardner (1971), Zakharov and Faddeev (1974) and Faddeev (1980). It has been 
demonstrated by Zakharov and Faddeev that an infinite series of equations of the same 
Hamiltonian structure is connected with the Korteweg-de Vries equation (to be 
precise, with the associated linear spectral problem). This observation has been 
developed and generalised by Flaschka and Newell (19‘75) in the framework of the 
AKNS method (Ablowitz et a1 1974). It turns out to be possible to analyse, from the 
same standpoint, the Hamiltonian structure of all equations integrable by the Zak- 
harov-Shabat linear spectral problem. Another approach to Hamiltonian integrable 
equations has been developed in the papers of Gel’fand and Dikij (1977, 1978) for 
example. 

Recently, the AKNS method has been extended to the matrix linear spectral problem 
of arbitrary order (Newell 1979, Kulish 1979, Konopelchenko 1980a, b, 1981). 
Among the corresponding integrable equations there are, in particular, the generalisa- 
tions of the sine-Gordon equation to any classical Lie group. In the general position, all 
equations of this class, as was shown in Newell (1979) and Konopelchenko 
(1980b, 1981), are Hamiltonian ones. 

What we wish to consider in the present paper is the natural group reductions of the 
general equations integrable by a linear spectral problem of arbitrary order, i.e. the 
reductions connected with ‘embedding’ of potentials into one of the classical Lie 
algebras BN, CN, DN. It is shown that these reduced equations (particularly, generalisa- 
tions of the sine-Gordon equation to the SO(N, C) and Sp(2N, C )  ( N  = 1 , 2 , 3 , .  . .) 
groups are Hamiltonian ones. The Poisson brackets are given, The Hamiltonian 
structure of a class of equations integrable by the matrix generalisation of the Zak- 
harov-Shabat linear problem is analysed. And also, some reductions of these equations 
are considered. 

0305-4470/81/081849+ 13$01.50 @ 1981 The Institute of Physics 1849 
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The paper is arranged as follows. The general form of the integrable equations and 
their group reductions are examined in § 2. The Hamiltonian structure of the reduced 
equations is discussed in 8 3. Section 4 is devoted to the Hamiltonian structure of 
equations integrable by the matrix Zakharov-Shabat linear problem. 

2. General form of integrable equations and group reductions 

We shall consider differential equations integrable by the linear spectral problem 

a* - = iAA4 +iP(x, t ) $  
ax 

where A is the spectral parameter (A E C), A is a constant matrix of order N and the 
‘potentials’ P(x ,  t )  are N x N matrices. The general integrable equations are of the 
following form (Konopelcbenko 1980b) 

where &(A, t ) ,  . . . R,(A, t )  are arbitrary meromorphic functions, rA = dim gO(A) - 1, 
go(A) is the zero component of the Fitting decomposition of the algebra gl(N, C) with 
respect to A ( [ A ,  gO(A)] = 0) .  Matrices H,, cy = 1, . . . , rA+  1 form the basis of the 
subalgebra gO(A). For arbitrary B E gl(N, C), and BF(A) denote the projections B 
onto g g A )  and &(A), respectively (gF(A)  is the direct sum of non-zero root subspaces in 
the Fitting decomposition gl(N, C) with respect to A ) .  Operator L’ is of the form 

Equation (2.2) is written in the gauge Po(A) = 0. A sense of this gauge is that the purely 
gauge (non-dynamical) degrees of freedom are excluded from P(x, t )  (Konopelchenko 
1980b). 

In what follows we restrict ourselves to the case of a diagonal matrix A. If all 
elements of A are different, then gO(A) is a set of all diagonal matrices and rA = N - 1. In 
this case, when all N 2  - N components of P(x,  t ) (P  = PF(A))  are independent, equation 
(2.2) is an equation on the algebra gl(N, C) (to be more precise, on gl(N, e),) in the 
general position. In the general position, equations of the type (2.2) are Hamiltonian 
ones with the Poisson bracket (Newell 1979, Konopelchenko 1980b, 1981) 

SI W 

{I, H }  = dx Tr( -[ W x ,  t )  A,  SP(x, t )  -m 
(2.3) 

Generally speaking, under the reductions of general equations the Hamiltonian struc- 
ture varies (for N = 2 see Flaschka and Newell (1975)); for the reduction problem see 
e.g. Zakharov (1980), Zakharov and Shabat (1979). 

Now, consider the natural group reductions for general equations (2.2), i.e. the 
reductions associated with transition from the algebra gl(N, C) to one of the classical Lie 
algebras A N ,  B N ,  CN, D N .  The reduction gl(N, C) -j sl(N, C) keeps equation (2.2) in the 
general position. With the purpose of describing the remaining three non-trivial 
reductions, the choice of a definite matrix realisation of the algebras BN, C N ,  L?N seems 
to be necessary. In our paper we follow Bourbaki (1972), and 
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(i) we identify the algebra BN with the algebra so(2N + 1, C) of the quadratic 
matrices P of order 2N+ 1 for which 

PT = - TBPT;' (2.4) 

where 

T B =  0 -2 0 i: 1 :I 
and s is the quadratic matrix of order N, all elements of which are zero ones except for 
those placed at the by-side diagonal and equal to unityt. The symbol T means the 
matrix transposition. 

(ii) The algebra C,(N 3 1) is identified with the algebra sp(2N, C) of quadratic 
matrices P such that 

pT = - T~PT;' (2.5) 
where 

(iii) The algebra DN(N 2 2) is identified with the algebra s0(2N, C) of quadratic 
matrices P for which 

pT = - T ~ P T D ' .  (2.6) 

Such a realisation of the algebras BN, CN, DN is suitable for our purposes, since it 
enables 11s to consider all three algebras simultaneously. The specific feature of each 
algebra will manifest itself only in an order of the matrices P and T (the odd order for 
BN and the even order for CN and D N )  and also in the form of the matrix 
T(TB, Tc, To). In all three cases, the Cartan subalgebras consist of diagonal matrices 
with the basis 

{H-ol,a=l,. . . , N ; H , = E , * - E ~ N + ' - , , ~ N + ~ - - ~ ~ }  
where 

( E u p ) i k  = SoliaCik ( a , p = l ,  . * . ,  N ; i = l ,  . . . ,  2N(2N+l) ) .  

It is easy to be convinced, following Konopelchenko (1980b), that equations (2.2) 
admit reductions to the algebras so(2N + 1, C), sp(2N, e),  and s0(2N, C) described 
above, if (Y = E, % ( A ,  t)H,) 

that is 

(2.7) 
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where {H,, a = 1, . . . , N }  are the bases of the Cartan subalgebras of the algebras 
so(2N + 1, C),  sp(2N, C), s0(2N, C); al,  . . . , aN are any numbers; SZl(A,  t ) ,  
. , . , SZN(A,  t )  are arbitrary functions A. In this case, 

T-'$T(X, t ;  h ) T  = $-'(X, t ;  A ) .  (2.9) 

For the transition matrix of the linear spectral problem (2.1) under the reductions to the 
algebras so(2N+ 1, e), sp(2N, C), and s0(2N, C), respectively, we have 

T - ' s ~ ( A ,  t )T  = s-'(A, t ) .  (2.10) 

In a particular case 0, = w , K 1 ,  where w,(a = 1, . . . , N )  are arbitrary numbers, 
equations (2.2) may be written as 

a 
at  -( [A, U-' YU]  = 0 

' (2.11) 

where 

Equations (2.1 1) represent a generalisation of the sine-Gordon equation to the 
groups SO(N, C), Sp(2N, C) - U E SO(N, C), or U E Sp(2N, C). (For the generalisa- 
tions of the sine-Gordon equation to the groups SU(N) and SO(N) see Budagov and 
Takhtadjan (1977), Budagov (1978), Zakharov and Mikhailov (1978) and Konopel- 
chenko (1980a).) 

One emphasises that if all elements of the matrices iA, i Y and i P  are real, i.e. all a, 
and SZa(A, t )  in (2.8) are purely imaginary, equations (2.2) admit additional reductions 
to the algebras so(2N + 1, R), sp(2N, R), s0(2N, 52). In particular, we have the general- 
isation (2.11) of the sine-Gordon equation to the groups SO(2N + 1, R), Sp(2N, R) and 
SO(2N, R). 

3. The Hamiltonian structure of equations under the reductions to the algebras BN, 
CN, D N  

Let us present a few formulae (see Konopelchenko 1980b) which will be required in the 
following. We denote the fundamental matrices solutions (2.1) F +  - exp iAAx, 

F -  - exp iAAx by F+(x,  t ;  A )  and F-(x ,  t ;  A )  (assuming that P(x,  t )  - 0)  and the 

transition matrixF+(x, t ;  A )  = F-(x,  t ;  A ) S ( A ,  t )  by S(A, t ) .  For two matrices P(x,  t )  and 
P'(x, t )  and the corresponding S(A, t ) ,  F+(x, t ;  A ) ,  and S'(A, t ) ,  F+'(x,  t ;  A )  we have the 
relation 

X+m 

x - r - a  I x b a  

+m 

S' - S = - i s  dx F+-l(P' - P)F+'. (3.1) I, 
If it is assumed that 

-- dS(A' t ,  - i[ Y(A, t ) ,  S(A, t)] 
dt (3.2) 
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where Y is any element of the Cartan subalgebra containing A, it follows from (3.1) that 
+m 5 dx Tr[ ( E - i  9 & ( A ,  t)[H,, P])c$++~(x, t ;  A ) ]  = O  

-m a = l  
(3.3) 

where H,, cy = 1, , , . , rA is the basis of the Cartan subalgebra, Y = I;LA=;4=1 %(A,  t ) H ,  and 

4 fy)(x, t ;  A )  = (F+-.l)il(F+)kn. Then, the following relation holds 
++ 

++ ++ ++ 
L 4 !$I) = A[A, 4 ga,]+[P(x, t ) ,  4 b'&(+0O)l (3.4) 

where 

++ ++ 
and, finally, taking into account the equality R(A) 4 =  LA) 4 $'&I (where 
[A,  $A] = $; i # n )  and proceeding, in (3.3), from the operator L to the operator L+ 
adjoint to it with respect to the bilinear form J.Tm dx Tr(4(x)$(x)), we obtain equations 

In the general case, the Hamiltonian structure of equations (2.2) is proved, using the 
(2.2). 

following relation resulting from (3.1): 

-+ 
where 4 = (F--')il(F+)k?,, and also in the equality (Konopelchenko 1980b) 

-+ -+ -+ 
L + 4  -ALA, dEL)I+[4 o ( A ) ( - ~ ) , P ( x ,  t ) ]  (3.7) 

-+ 
where 4 $I( - 00) = &&,. 

In the Hamiltonian interpretation of equations (2.2) in the general case the fact is 
significant that all Pkl(x, t )  are independent dynamical variables. Under the reductions 
of the general equations (2.2) we have certain relations between the variables Pk,(x, t ) .  
In our case of the reductions to the algebras B N ,  CN, DN, they are of the form 

pT= - TPT-'. (3.8) 

Following the standard procedure, it is necessary to resolve these constraints, i.e. to 
introduce the set Q(x, t )  of independent dynamical variables. One can parametrise the 
set of matrices P(x, t )  satisfying relations (3.8) by various ways. We introduce 
independent dynamical variables as follows. Let us represent P(x, t )  in the form 

(3.9) 

where Q(x, t )  is the left-triangular matrix, i.e. the matrix all elements of which placed 
below the by-side diagonal are equal to zero?. It is not hard to convince oneself, using 
the expressions for the matrices P(x, t )  satisfying (3.8) (see Bourbaki 1972, ch 8, 
Zakharov 1980) that all elements of the matrix are independent and that formula (3.9) 
gives the general form of the matrices P(x, t )  belonging to the algebras BN, CN, DN. The 

P = Q - T-'QTT 

t We would like to recall that our gauge is Paca, = 0, i.e. PD = diag P = 0. 
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number of the elements Q coincides with the dimensionality of the corresponding 
algebra and is equal to so(2N + 1, C) -N(2N + l ) ,  for sp(2N, e) - N ( 2 N  + l ) ,  N ( 2 N  + 
1) for sp(2N, C) and N ( 2 N  - 1) for s0(2N, C). It is necessary to emphasise the fact that 
for the orthogonal algebras so(N, C) the elements of the matrix Q ( x ,  t )  placed on the 
by-side diagonal are equal to zero. 

Let us denote the operation of projection onto the left-triangular matrices by the 
symbol V, in particular Q = Qo. 

Now, convert equation (2.2) to such a form in which the latter contains independent 
variables Q only. Let us start with equation (3.3). Following from the definition (3.9) 
and using the properties of the matrix trace (in particular Tr(QX) = Tr(UXV)), we get 
from (3.3) (rA = N )  

where = c$P) - T-l&P’T, From (3.4) and (3.5) we find 

cm 

+i[ w), I, dy ( [ ~ ( y ) ,  X V ( Y  )ID - T--~[P(x), X ~ ( Y   IO^)] 
As a result, equation (3.10) may be written in the following form 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

Finally, coming in (3.14) from the operator L(Q) to the operator L;Q) adjoint to L(Q)  
with respect to the bilinear form j?: dx Tr(Q(x)X(x)), we obtain 

N 1-r dx Tr[ “c(x, t ;  A )  ~ , (L?Q)A,  t)[Ha, Q])] = O  (3.15) 

Equation (3.15) is fulfilled, if 

(3.17) 

Equation (3.17) is the form of equation (2.2) containing the variables Q(x, t) only. Note 
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that equation (3.17) may be derived from equation (2.2) directly, applying the opera- 
tion V. 

Our next step is to show that equations of the form (3.17) are Hamiltonian ones. For 
this purpose, let us use relations (3.6) and (3.7). It follows from them that 

. +m 

(3.18) 

and 

Let us introduce a quantity & ( x ,  t ;  A ) :  

For the algebra so(2N + 1, C), n takes the values 1 ,2 ,  . . . , 2 N  + 1. It follows from 
(3.18) (SD = diag S )  that 

(3.21) 6 
~ Q T  

& ( x ,  t ;  A )  =i-Tr(H, In &(A))  

and from (3.19) that 

- (LTQ)A - A  ) [A,  I L I  = [Ha, Q(x, t)I. (3.22) 

Expanding the left- and right-hand sides of (3.22) in the asymptotic series of A-', we 
obtain 

(J$Q)A)'"[H,, Q(x, t ) l =  [A,  nlhm+l)(x, t)l (3.23) 

where I l a ( x ,  t ;  A )  = Z:=, A--'"n?)(x, t). From (3.21) we find 

(m  = 1,2 ,  3, . . .) 

6 
IILm)(x, t )  = i- Tr(H,C'"'l') 

SQT 
(3.24) 

where In So@) =E:=, h-'"C'" and C"") (m = 0, 1 ,2 ,  . . .) are the integrals of motion 
of equations (2.2) and (3.17), respectively (Konopelchenko 1980b). 

It follows from relations (3.23) and (3.24) that equation (3.17) with & ( A ,  t )  = 
E:=" w",t)A" (U: are any numbers) is of the form 

-- 
"(" a t  t, - [A' 

where 
N m  

X= 1 w",t)Tr(H,C(m+l)). 

(3.25) 

(3.26) 
a = l  m=O 

It is easy to see that equation (3.25) may be written in the Hamiltonian form 

d P  
a t  
- = {P, x} 

with the Hamiltonian (3.26) and the Poisson bracket 

(3.27) 
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The Hamiltonian structure of equations (3.17) with singular functions SZ,(A, t )  = 
Xc",,lw*,(t)(A-Ao,)-m is proved in a similar way. The Hamiltonian of such an 
equation is equal to 

(3.28) (-1) ~m 
X= u~(t)---(-Tr(H, In SD(A))) 

a = l  m = l  ( m - i ) !  ahm- '  h = A o m  

and the Poisson bracket is given by formula (3.27). 
In particular, equations (3.17) with in ,  = (where ho, are constants) which are 

equivalent to generalisations of (2.11) of the sine-Gordon equations to the groups 
SO(N, @) and Sp(2N, @) are Hamiltonian ones. The Hamiltonian is equal to X= 
Tr(Y In M O ) )  and Q = (U-'aU/ax)o. 

The Hamiltonian structure of equations of the type (2.2) under the reduction to the 
algebra so(N, @) has also been examined in Konopelchenko (1981). The basis has been 
chosen in such a way that PT= -Pa The associated Poisson bracket is greatly dis- 
tinguished from (3 -27): its kernel contains the operator of the covariant derivative type. 
This difference is due to a different choice of the coordinates in a phase space. 

In conclusion, it is worth noting that just as in the general case (Konopelchenko 
1980b, 1981), under the reductions to the algebras so(N, C), sp(2N, @) an infinite series 
of symplectic structures corresponds to equations (3.17). The Poisson brackets are 
obtained by introducing into the kernel of the bracket (3.27) any degrees of the 
operator L;& (for the hierarchy of the Poisson brackets at N = 2  see Kulish and 
Reiman (1978)). 

4. Hamiltonian structure of equations integrable by a matrix generalisation of the 
Zakharov-Shabat linear problem 

0 Let us now turn to the linear problem (2.1) of order 2N with the matrix A = (0' -1) 

where I is the unit matrix of order N. In the gauge PO(A) = 0 the linear problem (2.1) is 
reduced to 

where? Q ( x ,  t), R ( x ,  t )  are quadratic matrices of the Nth  order and 0 is the zero matrix 
of order N. The problem (4.1) is the matrix analogue of the well known Zakharov- 
Shabat linear spectral problem ( N  = 1). 

The equations integrable by means of (4.1) are characterised, in the general case, by 
2N2 - 1 arbitrary functions (Konopelchenko 1980b). Among them there are equations 
of the form 

(4.2) 
aP 
a t  
- - 2iSZ(Li, t )AP  = 0 

where P = (g :), n(A, t )  is the arbitrary meromorphic function and 

(4.3) 

+ In 0 3 the matrix Q means another quantity; for this reason, it is ruled out from § 4. 
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Since in our case [P, QF]F 
(4.2) are matrix analogues 
and Ablowitz et a1 (1974). 

= 0, the general operator L i  reduces to (4.3). Equations 
of the equations examined in Flaschka and Newel1 (1975) 
At R(A) = -2A2 we have the system of matrix equations: 

aQ a2Q i-++++QRQ = 0 
a t  ax 
aR a2R 

i - - - y - 2 R Q R  = O .  
at ax 

Under the reduction R = f Q' we obtain the matrix analogue of the Schrodinger 
nonlinear equation (NLS). If R(A) = -4A3, equations (4.2) are of the form 

aQ a3Q aQ d Q  

dR a3R aR aR 

--I- 3 f 3 - R Q  + 3 QR- = 0 
at ax ax ax 

-+--7j-+33QR+3RQ-=O0. 
a t  ax ax ax 

Under the reductions R = a Q  and R = 1 we obtain the matrix analogues of the 
modified Korteweg-de Vries equations (MKDV) and the Korteweg-de Vries (KDV) 
equation, respectively. At n(A) - A  and R = - Q we have the matrix analogue of the 
sine-Gordon equation. It is worth mentioning that the matrix analogues of NLS, KDV, 
MKDV have been considered by Zakharov (1979) and Marchenko (1977). 

Let us come now to the Hamiltonian structure of equations of the form (4.2). It is 
clear that in the general position they are Hamiltonian ones and the Poisson bracket is 
given by formula (2.3). In variables Q and R this bracket is of the form 

(4.4) 

Under the reduction R = f Q' the bracket (4.4) is conserved. 
A non-trivial modification of the symplectic structure appears under the reductions 

R = aQ ( a  is an arbitrary non-zero number) which take place at any odd functions 
R(A). Indeed, it is easy to see that if R = aQ,  then the bracket (4.4) becomes degenerate 
(i.e. {I, %'}(4.4) = 0 for any I and 2). So, one must project the equations (4.2) onto the 
submanifold of the independent dynamical variables Q(x, t ) .  Then, it is necessary to 
investigate the Hamiltonian structure of these reduced equations. 

Let us rewrite equations (4.7) in the form containing Q only. 
From equation (3.3) we obtain ( 4 . ~  = (:3 9)) 

++ J-y dx Tr { $ - 2i Q R (A ) II, } = 0 (4.5) 

where + = 43 - a&, x = 43 + 0 4 2 .  

equations which are satisfied by + and x . From (3.4) we obtain 

++ ++ 
We have to find an operator L such that L CC, = A  + .  To do this, present the 

++ ++ 

++ ++ 
iD+ t,b =2A x (4.6) 

++ ++ 
i D - x  =2A+ (4.7) 
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where [, ]+, [, 3- denote the anticommutator and commutator, respectively. Substitut- 
ing x from (4.6) into (4.7), we have 

(4.9) 

where 

Further, let us transform the first term in (4.5) into the form containing $, instead of x. 
Let us introduce the matrix w ( x ,  t )  of order N such that 

_- aQ-D-W. 
at  

(4.11) 

Bearing in mind that 
+m 

using (4.7) and (4.9), and also assuming that W ( * t )  = 0 we transform (4.5) into the 
form 

where ~ ( h ' )  = A - ' a ( A )  
From (4.12) we get 

where LTQ) is the operator adjoint to L(Q) with respect to the bilinear form 
j?: dx Tr(Q(x)$(x)). It is equal to 

Equality (4.13) is fulfilled, if 

W ( X ,  t )  - w (L~Q, ,  t ) Q ( x ,  t )  = 0. 

Taking into account (4.11), we find 

(4.14) 

(4.15) 

(4.16) 
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Equation (4.16) is a form of equation (4.7) (at R = aQ)  which contains the independent 
dynamical variables Q only. 

We shall attempt now to prove the Hamiltonian character of equations (4.16). From 
(3.6) we have 

-+ 
Making use of the analogues of equation (4.5) for 4 $"I, we obtain 

+ -+ 
2N $ , ( n n )  2N 

iD+ 1 A,,--=2A 1 A,,------ 
n = l  Snn  n = l  S n n  

Hence, 

L&)IT(x,  t ;  A)=A21T(x, t ;  A ) -2aAQ(x ,  t )  

where 

and from (4.17) 

II (x ,  t ;  A )  = i-- Tr(A In So(A)). 
~ Q T ( x ,  t )  

(4.17) 

(4.18) 

(4.19) 

(4.20) 

Writing (4.19) in the form IT(x, t ;  A)/2aA = (A*-L[Q))- 'Q(x,  t )  and expanding the left- 
and right-hand sides in asymptotic series of A-', we obtain 

(4.21) 
1 

2a  (L&,)"Q = -n(2n+1) ( x ,  t )  

where 

" 1  
n = O  A 

n ( x ,  t ;  A )  = 1 ~ I I ( " ) ( x ,  t ) .  

From equalities (4.20) and (4.21) we have 

i s  
2a  ~ Q T  

(L&))"Q = - - Tr(AC'2n+1') n = 1 , 2 , .  . . (4.22) 

where C(,) are the integrals of motion (In SD(A) = Z:=O A-,Ccn)). 

as 

As a result, equation (4.16) with any entire function w(A2) = Z:=,I wmA 2 m  is written 

(4.23) 

where 

(4.24) 
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There is no difficulty in seeing that equations (4.23) may be represented in the 
Hamiltonian form aQ/at = {Q, X }  with the Hamiltonian X (4.24) and Poisson bracket 

(4.25) 

One can examine equations (4.16) with singular functions of the form w (A 2 ,  in an 
analogous way: 

(4.26) 

where w, (m = 1 ,2 ,  . . .) are arbitrary numbers. It follows from (4.19) and (4.20) that 

1 II(x, t ;  A )  - 1 am-' 
(L;,, - A ~ ) - " Q ( x ,  t )  = -___ (m - I)! a ( A z ) m - t  2 a  A 

(4.27) 

Using (4.27) and (4.20), equations (4.16) with w ( A 2 )  of the type (4.26) may be 
represented in the form 

)) = o .  iw, s am-' Tr(A In SD (A )) 
A =how 

si 5 D- -( 2 m - t (  A at m = O  2a(m - l)! SQT d(A ) 
(4.28) 

These equations are Hamiltonian ones with respect to the Poisson bracket (4.25) with 
the Hamiltonian 

(4.29) 
m wm am-' Tr(A In So ( A ) )  

m=12a(m - l ) !  ( a ( A  ) A 
x=- 

In particular, the Hamiltonian of the matrix generalisation of the sine-Gordon equation 
(w = A-', a = -1) is equal to 2 = $ (a/aA) Tr(A In S,(O)). 

Thus, we have shown that equations of the form (4.2) which are integrable by the 
spectral problem (4.1) are Hamiltonian ones in the general position and also under the 
reductions R = iQ', R =aQ. Note that the kernel of the Poisson bracket (4.25) 
contains the integro-differential operator D-. 

With N = 1, Q(x,  t )  is the numerical function, operator D- = a/ax and in the case 
a = -1 formulae (4.15)-(4.29) are converted to the corresponding formulae of 
Flaschka and Newel1 (1975). 

Just as in the case N = 1 (Kulish and Reiman 1978), an infinite series of symplectic 
structures corresponds to equation (4.7). 

In conclusion, we should like to mention that the Hamiltonian structure of equations 
integrable by the matrix spectral problem - aZ+h/dx2 + q(x ,  f ) + h  = A '4, which is 
equivalent to (4.1) under the reduction Q = iq, R = i, has been examined in Kulish 
(1980). 
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